ZMAN ${ }^{\text {TM }}$

Getting Started with ZMAN

June 2010
WonATech Co., Ltd.

What is ZMAN?

- Impedance Spectroscopy Analysis and Presentation Software
- We have to know about:

1. Electrochemical Impedance Spectroscopy(EIS)
2. Analysis

- K-K consistency
- Modeling of Data
- Initial Guessing: Circular Fit, Genetic Algorithm
- Complex Non-linear Least Square Fit

3. Presentation

- Nyquist, Bode, Black-Nichols, and 3D Curve/Surface Plots
- Parameter Plot

EIS

Nomenclature : EIS

- Electrochemical?
- In electrochemistry, everything of interest takes place at the interface between electrode \& electrolyte!
- Controlling REDOX by Potentiostat/galvanostat
- Impedance?
- AC circuit theory describes the response of a circuit to an alternating current or voltage as a function of frequency
- Impedance is a totally complex resistance encountered when a current flows through a circuit made of resistors, capacitors, or inductors, or any combination of these
- Ohm's Law, $\mathrm{V}=\mathrm{R} \times \mathrm{I} \rightarrow \mathrm{V}=\mathrm{Z} \times \mathrm{I}$ (complex number Z)
- Spectroscopy?
- No Quantum Process
- Small Perturbation \rightarrow Response

Electrochemical Interface

- A potentiostat is an instrument which measures the current / voltage characteristics of an electrochemical (electrode/solution) interface. Everything happens at the interface.

Process of Energy Storage in Electrochemical

 System
Common Steps

- Ionic charge conduction through electrolyte in pores of active layer
- Electronic charge conduction through conductive part of active layer
- Electrochemical reaction on the interface of active material particles including electron transfer
- Diffusion of ions or neutral species into or out of electrochemical reaction zone.

Impedance Spectra of a Li-ion battery

Impedance Spectra upon cycling

CF)Discharge curve upon cycling

Nyquist Plot
vs. level of discharge

Effect of temperature

PEMFC

A. PEMFC Under Dead End ($\mathrm{H}_{2} \mathrm{O}$ outlet in cathode closed)

REAL PART /

B. PEMFC Under CO Poisoning ($\mathrm{H}_{2}+100 p p m \mathrm{CO}$ as fuel gas)

Back to the e'Chem Interface

- Charge Transfer $\Rightarrow R_{c t \prime} R_{p}$
- $R_{c t} \sim 1 / i_{0}$
- Butler-Volmer Equation
- Diffusion Layer \Rightarrow W
- No energy loss
- Bulk Electrolyte $\Rightarrow R_{s^{\prime}} R_{\Omega}$
- Double Layer $\Rightarrow C_{d 1}$
- Non-Faradaic Process

Basic Circuit Elements

Resistor

$$
I(t)=I_{0} e^{j \omega t}
$$

$V=R I$

$$
V=R I
$$

$$
\begin{array}{ll}
\rightarrow & Z=R
\end{array}
$$

$$
V=Z \times I
$$

Capacitor
-

$$
V=\frac{Q}{C}=\frac{1}{C} \int I d t \quad \begin{gathered}
I(t)=I_{0} e^{j \omega t} \\
V=Z \times I
\end{gathered} \quad Z=\frac{1}{j \omega C}
$$

Inductor

$$
I(t)=I_{0} e^{j \omega t}
$$

$-\infty$

$$
V=L \frac{d I}{d t}
$$

$$
V=Z \times I
$$

$$
Z=j \omega L
$$

Randles' Circuit

Rs-(Rct-W)|Cdl

Basic Circuit Elements 1

	Description	Parameters	Formula	Note
R	Resistive Element	R	R	R
C	Capacitive Element	C	$\frac{1}{s C}$	1/s/C
L	Inductive Element	L	$s L$	s*L
W	Warburg Diffusion	W	$\frac{1}{W \sqrt{s}}$	1/W/sqrt(s)
0	Constant Phase Element	Oy Oa	$\frac{1}{Q_{y}} \frac{1}{s^{Q_{a}}}$	1/Oy/pow(s, Qa)

Basic Circuit Elements 2

	Description	Parameters	Formula	Note
0	Nernst Impedance	Oy Ob	$\frac{1}{\mathrm{O}_{\mathrm{y}} \sqrt{\mathrm{~s}}} \tanh \left(\mathrm{O}_{\mathrm{b}} \sqrt{\mathrm{~s}}\right)$	
T	Finite Diffusion	Ty Tb	$\frac{1}{\mathrm{~T}_{\mathrm{y}} \sqrt{\mathrm{~s}}} \operatorname{coth}\left(\mathrm{~T}_{\mathrm{b}} \sqrt{\mathrm{~s}}\right)$	
G	Homogeneous Reaction (Gerischer)	Gy Gk	$\frac{1}{G_{y} \sqrt{G_{k}+s}}$	
S	Spherical Diffusion	Sy Sk	$\frac{1}{S_{y}} \frac{1}{\sqrt{S_{k}}+\sqrt{s}}$	

Basic Circuit Elements 3

	Description	Parameters	Formula	Note
X	Finite-length diffusion at planar particles	Xr Xc	$\sqrt{\frac{3 \mathrm{X}_{\mathrm{r}}}{\mathrm{X}_{\mathrm{c}} \mathrm{~s}}} \tanh \left(\sqrt{3 \mathrm{X}_{\mathrm{r}} \mathrm{X}_{\mathrm{c}} \mathrm{~s}}\right)$	*a
Y	Finite-length diffusion at spherical particles	Yr Yc	$\frac{\tanh \left(\sqrt{3 Y_{r} Y_{c} s}\right)}{\sqrt{\frac{3 Y_{\mathrm{c}} s}{Y_{\mathrm{r}}}}-\frac{1}{\mathrm{Y}_{\mathrm{r}}} \tanh \left(\sqrt{3 Y_{\mathrm{r}} \mathrm{Y}_{\mathrm{c}} \mathrm{~s}}\right)}$	*a
Z	Finite-length diffusion at cylindrical particles	Zr Zc	$\frac{\mathrm{I}_{0}\left(\sqrt{2 \mathrm{Z}_{\mathrm{r}} \mathrm{Z}_{\mathrm{c}} \mathrm{~s}}\right)}{\sqrt{2 \mathrm{Z}_{\mathrm{r}} \mathrm{Z}_{\mathrm{c}} \mathrm{~s}} \cdot \mathrm{I}_{1}\left(\sqrt{2 \mathrm{Z}_{\mathrm{r}} \mathrm{Z}_{\mathrm{c}} \mathrm{~s}}\right)} \mathrm{Z}_{\mathrm{r}}$	*a,*b

a. Impedance Spectroscopy: Theory, Experiment, and Applications, $2^{\text {nd }}$ ed., Ed. E. Barsoukov, and J. R. Macdonald, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2005
b. $\quad I_{0}(x)$ and $I_{1}(x)$ are Bessel-functions of the first kind, with o and 1 order correspondingly.

Simple Circuit Elements

	Description	Parameters
	Formula	Note
Parallel RC Circuit	Pr	$\operatorname{Pr} /(1+5 * \operatorname{Pr} * \operatorname{PC})$

Diffusion

- Transmission Line Model

W: Warburg

O: Nernstian Impedance: Diffusion by Constant Concentration

$$
Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \tanh (\delta \sqrt{j \omega / D})
$$

T: Finite Diffusion Impedance: Diffusion by Phase Boundary

$$
Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \operatorname{coth}(\delta \sqrt{j \omega / D})
$$

Transmission Line

n Model

$1 \quad \mathrm{R}$
$2 \quad R-R \mid C$
3 R-(R-(R|C))|C
$4 \quad R-(R-(R-R \mid C) \mid C) \mid C$
$5 \quad R-(R-(R-(R-R \mid C) \mid C) \mid C) \mid C$
$6 \quad R-(R-(R-(R-(R-R \mid C) \mid C) \mid C) \mid C) \mid C$
$7 \quad R-(R-(R-(R-(R-(R-R \mid C) \mid C) \mid C) \mid C) \mid C) \mid C$
$8 \quad R-(R-(R-(R-(R-(R-(R-R \mid C) \mid C) \mid C) \mid C) \mid C) \mid C) \mid C$

Coating Capacitance

- Ideal Coating
- Imperfect Coating

$$
C_{c o a t}=\varepsilon \frac{A}{d}
$$

$$
-\mathrm{ww}_{\mathrm{w}}
$$

Installation and Activation IU2f9\|IgfIOU 9Uq $\forall C f I \wedge 9 f I O U ~$

Installation and Activation

1. Setup "LabVIEW Run-Time Engine 2009 SP1"

- How to get? Install CD or NI website (www.ni.com)
- http://joule.ni.com/nidu/cds/view/p/lang/ko/id/1600

2. Setup "ZMAN 2.2"

- How to get? Install CD or WonATech website (www.wonatech.com)
- http://www.xenosystem.com/zman/korindex.htm

3. Activate ZMAN 2.2

- Is it necessary? Once activated, you can open any ASCII files.
- How to activate? Click Activate button in Getting Started Window

Launching ZMAN

- The Getting Started window appears when you launch ZMAN

a. Create new project
b. Select among the most recently opened ZMAN project files
c. Access information and resources to help you learn about ZMAN and resources on the WonATech Web site, wonatech.com
d. Launch the ZMAN User Manual
e. Manage Model Editor

Overall Procedure
○^6ı9\| bıoćanı.

1. Selecting Data Files

- Available File Formats
- WonATech Binary Files:
- *.wdf(WEIS Series), *wis(Z\# Series)
- No activation required
- $3^{\text {rd Party Binary Files: }}$
- *.ism(Zarner)
- $3^{\text {rd }}$ Party ASCII Files:
- *.dta(Gamry), *.z(Solartron) *.dfr(AutoLab)
- General ASCII Files:
- *.txt, *.dat, *.csv, etc.
- Delimiter: space, tab, comma(,), colon(:), semicolon(;)
- The Order of Columns: f(or w), Z'(or $|Z|), Z^{\prime \prime}$ (or Phase)
- Editing, Removing Bad Data, Interpolation...
- Set Column Value

Set Column Value:
 Available Functions

- $\mathbf{p i}$
- abs(x)
- $\operatorname{acos}(x)$
- $\operatorname{acosh}(x)$
- $\operatorname{acot}(x)$
- acoth(x)
- $\operatorname{asin}(x)$
- $\operatorname{asinh}(x)$
- $\operatorname{atan}(x)$
- $\operatorname{atan} 2(x, y)$
- $\quad \operatorname{atanh}(x)$
- ceil(x)
- $\cos (x)$
- $\cosh (x)$
- $\cot (x)$
- $\operatorname{coth}(x)$
- $\csc (x)$
- $\operatorname{csch}(x)$
- $\operatorname{deg}(x)$
- $e(x)$
- $\quad \operatorname{erf}(x)$
- erfc(x)
- $\exp (x)$
- factr(x)
- floor(x)
- $\operatorname{fract}(x)$
- gamma(x)
- gammai(a, x)
- getexp(x)
- getman(x)
- int(x)
- Idexp(m, e)
- $\ln (x)$
- $\quad \log (x, y)$
- $\log _{10}(x)$
- $\log 2(x)$
- pi(x)
- pow(x, y)
- pow1o(x)
- powz(x)
- rad(x)
- random (x, y)
- $\sec (x)$
- $\operatorname{sech}(x)$
- $\quad \operatorname{sign}(x)$
- $\sin (x)$
- $\operatorname{sinc}(x)$
- $\sinh (x)$
- spike(x)
- sqrt(x)
- square(x)
- step(x)
- $\tan (x)$
- $\tanh (x)$

2. Making ZMAN Project File

- Binary File Format: *.zmp
- 3 Control Variables Available
- Manipulation Items: Editing, Removing Bad Data, Interpolation...

3. Analysis Items

- KK Consistency for Validation
- Modeling:
- Initial Guessing: Circular Fit, Genetic Algorithm
- Model Searching
- Model Subtraction
- Model Editor: Manage Library, Model Simulation

Validation of IS Data

- Ideal impedance data must fulfill:
- Causality: The output must be exclusively a result of the input
- Linearity: The response must be a linear fn. of the perturbation
- Stability: The system must not be changing during measurement
\rightarrow a serious problem for corroding systems
- Finite-Valued: Impedance must be finite value at any frequency
- Kramers-Kronig Relation:
- Validation Test
\rightarrow Artifact or true Z?
- Low Frequency Extrapolation
- Calculation: Maclaurin Method
- The integration range includes the frequencies zero and infinity
a. $Z^{\prime \prime} \rightarrow Z^{\prime}$

$$
Z^{\prime}(\omega)=Z^{\prime}(\infty)+\frac{2}{\pi} \int_{0}^{\infty} \frac{x Z^{\prime \prime}(x)-\omega Z^{\prime \prime}(\omega)}{x^{2}-\omega^{2}} d x
$$

b. $Z^{\prime} \rightarrow Z^{\prime \prime}$

$$
Z^{\prime \prime}(\omega)=-\frac{2 \omega}{\pi} \int_{0}^{\infty} \frac{Z^{\prime}(x)-Z^{\prime}(\omega)}{x^{2}-\omega^{2}} d x
$$

\rightarrow USE Z-HIT Approximation

Modeling of Data

- The model to be fitted is

$$
y=y(x ; \vec{p})
$$

and the merit function is

$$
\chi^{2}(\vec{p})=\sum_{i=0}^{N-1}\left[\frac{y_{i}-y\left(x_{i} ; \vec{p}\right)}{\sigma_{i}}\right]^{2}
$$

- Problem: Given a set of N empirical datum pairs of independent and dependent variables, optimize the parameters of the model curve so that χ^{2} becomes minimal.
- Algorithm: Levenberg-Marquardt Method

Modeling of Data

- 26 Data Sequence

$Z^{\prime}+Z^{\prime \prime}$	Z^{\prime}	$Z^{\prime \prime}$	$\|Z\|+\phi_{Z}$	$\|Z\|$	ϕ_{Z}
$Y^{\prime}+Y^{\prime \prime}$	Y^{\prime}	$Y^{\prime \prime}$	$\|Y\|+\phi_{Y}$	$\|Y\|$	Φ_{Y}
$M^{\prime}+M^{\prime \prime}$	M^{\prime}	$M^{\prime \prime}$	$\|M\|+\phi_{M}$	$\|M\|$	Φ_{M}
$E^{\prime}+E^{\prime \prime}$	E^{\prime}	$E^{\prime \prime}$	$\|E\|+\phi_{E}$	$\|E\|$	ϕ_{E}

- 3 Weighting Functions

In case of $Z^{\prime}+Z^{\prime \prime}$

Unity	$\sigma_{i}=1$	for $\mathrm{i}=0$ to $2 \mathrm{~N}-1$
Proportional to Data	$\sigma_{i}=Z_{i}^{\prime}$	for $\mathrm{i}=0$ to $\mathrm{N}-1$
$\sigma_{i}=Z_{i}^{\prime}$	for $\mathrm{i}=\mathrm{N}$ to $2 \mathrm{~N}-1$	
Modulus to Data	$\sigma_{i}=\left\|Z_{i}\right\|=\sqrt{Z^{\prime 2}+Z^{\prime 2}}$	for $\mathrm{i}=0$ to $2 \mathrm{~N}-1$

Modeling of Data

Initial Guessing:
 Circular Fit

Initial Guessing:

Genetic Algorithm

- A search heuristic that mimics the process of natural evolution
- What's the best answer? It's survival of the fittest.
- Methodology
- Initialization: Initial individuals are randomly generated to form initial population
- Selection: During each successive generation, a proportion of the existing population is selected to breed a new generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected.
- Reproduction: Crossover and Mutation
- Termination: This generational process is repeated until a termination condition has been reached.

Options

Genetic Algorithm $1^{\text {st }}$ Generation

Genetic Algorithm $2^{\text {nd }}$ Generation

4. Presentation

- Immittance
- Impedance(Z), Admittance(Y), Modulus(M), and Dielectric Constant(E)

	$\begin{gathered} Z \\ Z^{\prime}+j Z^{\prime \prime} \end{gathered}$	$\begin{gathered} Y \\ Y^{\prime}+j Y^{\prime \prime} \end{gathered}$	$\begin{gathered} \mathbf{M} \\ M^{\prime}+j M^{\prime \prime} \end{gathered}$	$\begin{gathered} E \\ E^{\prime}-j E^{\prime \prime} \end{gathered}$
Z	Z	Y^{-1}	$\mu^{-1} \mathrm{M}$	$\mu^{-1} \mathrm{E}^{-1}$
Y	Z^{-1}	Y	$\mu \mathrm{M}^{-1}$	$\mu \mathrm{E}$
M	μZ	μY^{-1}	M	E^{-1}
E	$\mu^{-1} Z^{-1}$	$\mu^{-1} Y$	M^{-1}	E

* $\mu \equiv j \omega C_{c}$, where C_{c} is the capacitance of the empty cell
* C_{c} can be expressed as $\varepsilon_{0} \mathrm{~A} / \mathrm{d}$ in simple parallel plate model
- Nyquist(Cole-Cole), Bode, Black-Nichols, 3D Curve, 3D Surface, and Parameter Plot

Parallel Plate Model

$$
\begin{aligned}
& C=\varepsilon \frac{A}{d}=\varepsilon_{r} \varepsilon_{o} \frac{A}{d}=\varepsilon_{r} C_{c} \\
& Z=\frac{1}{j \omega C} \\
& \therefore \varepsilon_{r}=\frac{1}{j \omega C_{c} Z}=\frac{1}{\mu Z}
\end{aligned}
$$

